
SMImport suite

Registration

The SMImport suite for Delphi/C++Builder allows to import a data into linked recordset (any
TDataset descenders) from:

1. MS Excel spreadsheet (directly without OLE/DDE, including Office 12 files)
2. text delimited file
3. text fixed width file
4. XML file
5. HTML file
6. MS Access database
7. MS Word document
8. Lotus 1-2-3 spreadsheet
9. QuattroPro spreadsheet
10. Paradox table (directly without BDE)
11. DBase/FoxPro table (directly without BDE)
12. any ADO connection
13. Advantage database
14. DBISAM table
15. Clarion tables
16. Windows Clipboard
17. Windows Address Book (WAB)
18. any BDE dataset
19. VCalendar/ICalendar
20. Open Office spreadsheets
21. MS Outlook
22. any dataset component

Also SMImport suite contain the compound component with visual dialogs for easy defining
of import process settings. With this visual components you can allows for your end-user to
setup an import parameters.

Visit the web site at http://www.scalabium.com to see if updated help files is available.

http://www.scalabium.com/

Registration

By credit card By mail

Why Register
Thank you for your interest in SMImport suite.

Registered users will receive the latest registered version of SMImport suite, free on-line
support, and the source code.

Online registration
You can order a product online at:
1. ShareIt: https://secure.element5.com/register.html?productid=137994
2. Avangate: https://secure.avangate.com/order/checkout.php?
PRODS=4534078
3. PayPro: https://secure.payproglobal.com/orderpage.aspx?
products=51385

Questions & Comments
Please refer questions or comments about SMImport suite to:
http://www.scalabium.com
mailto:mshkolnik@scalabium.com

https://secure.element5.com/register.html?productid=137994
https://secure.avangate.com/order/checkout.php?PRODS=4534078
https://secure.payproglobal.com/orderpage.aspx?products=51385
http://www.scalabium.com/
mailto:mshkolnik@scalabium.com

Expressions in Mappings

An internal parser allow to use extended functions and operations in Mappings definitions.

TSMIDataFormats object
Properties Example

Unit
SMIBase

Description
The TSMIDataFormats object provides the possibility to customize the formats of loaded
data.

You would normally never create an object of this class. This object is created by any import
component automatically.

BooleanFalse property
See also

Applies to
TSMIDataFormats object

Declaration
property BooleanFalse: string;

Description
Using this property you can customize a text value of "false".
By default is a "False" text string.

BooleanTrue property
See also

Applies to
TSMIDataFormats object

Declaration
property BooleanTrue: string;

Description
Using this property you can customize a text value of "true".
By default is a "True" text string.

DateOrder property
See also

Applies to
TSMIDataFormats object

Declaration
property DateOrder: TSMIDateOrder;

Description
Using this property you can customize the date order for any date/time values.
By default is a doMDY.

DateSeparator property
See also

Applies to
TSMIDataFormats object

Declaration
property DateSeparator: Char;

Description
Using this property you can customize the DateSeparator character for any date/time
values.
By default is a current value from Regional settings of Windows.

DecimalSeparator property
See also

Applies to
TSMIDataFormats object

Declaration
property DecimalSeparator: Char;

Description
Using this property you can customize the DecimalSeparator character for any numeric
values.
By default is a current value from Regional settings of Windows.

FourDigitYear property
See also

Applies to
TSMIDataFormats object

Declaration
property FourDigitYear: Boolean;

Description
Using this property you can define a Y2K support for any date/time values.

By default is a current value from Regional settings of Windows (true if the
ShortDateFormat contains 'yyyy').

LeadingZerosInDate property
See also

Applies to
TSMIDataFormats object

Declaration
property LeadingZerosInDate: Boolean;

Description
Using this property you can switch between masks without zeros in day/month/year and
mask with zeros. For example, 'm/d/yyyy' and 'mm/dd/yyyy'.

By default is a current value from Regional settings of Windows (true if the
ShortDateFormat contains 'dd').

TimeSeparator property
See also

Applies to
TSMIDataFormats object

Declaration
property TimeSeparator: Char;

Description
Using this property you can customize the TimeSeparator character for any date/time
values.
By default is a current value from Regional settings of Windows.

TSMImportBaseComponent component
See also Properties Methods Events

Unit
SMIBase

Description
This is a base type from which inherited any import component.

About property
See also

Applies to
TSMImportBaseComponent component

Declaration
property About: TSMIAbout;

Description
This is design-time property only. If you press an ellipses button in Object Inspector, you'll
see a dialog with short information about SMImport suite and authors.

AnimatedStatus property
See also

Applies to
TSMImportBaseComponent component

AnimatedStatus indicates whether the status dialog is displaying during import process.

Declaration
property AnimatedStatus: Boolean;

Description
Set AnimatedStatus to True if you want to show an animated status dialog during the import
process.
Set AnimatedStatus to False if you want to import a data without animated status dialog.

DataFormats property
See also Example

Applies to
TSMImportBaseComponent component

Declaration
property DataFormats: TSMIDataFormats;

Description
The DataFormats property provides the possibility to customize the formats of loaded data.

DataSet property
See also

Applies to
TSMImportBaseComponent component

Declaration
property DataSet: TDataSet;

Description
Use the Dataset property to specify a source for data importing.

You can specify the any TDataSet successor.
For example, the BDE's TTable, TQuery, the multi-tier TClientDataSet, ADO's
TADODataset, TADOTable, TADOQuery, IBX's TIBTable, TIBQuery or third-party dataset
components (Titan for Btrieve, MemoryTable, OracleDataset etc).

DatasetKeys property
See also

Applies to
TSMImportBaseComponent component

Declaration
property DatasetKeys: string;

Description
If you want to update a data into dataset with data from external source, you must define
key fields. Using this information import process may define that one record from external
source is "similar" to record in destination.

If you have a multi-field key, please enter it in the next format 'Field1;Field2;Field3;...'
If you have unique index, then you can use the index fields as key fields for importing.

PS:
if you'll not define a DatasetKeys property, then you couldn't import a data using imUpdate,
imAppendUpdate or imDelete as value for ImportMode property. In this situation you can
use the imAppend or imCopy modes only which not requires information about keys.

FieldDelimiter property
See also Example

Applies to
TSMImportBaseComponent component

Declaration
property FieldDelimiter: TSMIFieldDelimiter;

Description
You can select one from pre-defined field delimiters:
1. fdNone - your external text file haven't any delimiter between fields
2. fdCustom - you have a custom delimiter which defined in FieldDelimiterCustom
3. fdTab - the delimiter is tabular character
4. fdSemicolon - the delimiter is semicolon (;) character
5. fdComma - the delimiter is comma (,) character
6. fdSpace - the delimiter is space (#32) character

For example, for the next text row in source text file
"Ukraine";"Kiev";"East Europe";603700;52000000
you must define a FieldDelimiter property as fdSemicolon

FieldDelimiterCustom property
See also Example

Applies to
TSMImportBaseComponent component

Declaration
property FieldDelimiterCustom: Char;

Description
If you have a some unique field delimiter which are not listed in TSMIFieldDelimiter (tabular,
semicolon, comma or space), you can assign it to this property.
If you will assign a some pre-defined delimiter, will automatically changed the FieldDelimiter
property.

Fixed property
See also Example

Applies to
TSMImportBaseComponent component

Declaration
property Fixed: Boolean;

Description
This property allows to switch a mode of import type for text file.

When Fixed is True, the source text file is "Fixed Width": fields are aligned in columns with
delimiters between each field.
When Fixed is False, the source text is CSV: characters such as comma or tab (separator
symbols) separate each field.

Mappings property
See also Example

Applies to
TSMImportBaseComponent component

Mappings specifies the column mappings for an import operation.

Declaration
property Mappings: TStrings;

Description
Set Mappings to specify the correspondence between fields in the Source and fields in the
Destination. By default the import components matches fields based on their position in the
source and destination tables. That is, the first column in the source is matched with the first
column in the destination, and so on. Mappings enables an application to override this
default.
Mappings is a list of column mappings (one per line) in one of two forms. To map the
column ColName in the source table to the column of the same name in the destination
table, use:

ColName

To map the column named SourceColName in the source table to the column named
DestColName in the destination table, use:
DestColName = SourceColName

When adding or appending records, fields in Destination which have no entry in Mappings
will be set to NULL.
When copying a dataset, fields in Destination which have no entry in Mappings will not
appear as columns in the copy of the table.

If source and destination column data types are not the same, import component can either
cancel the loading operation or perform a "best fit".

If possible, the field values from the Source will be converted into type of fields in
Destination but you can control this process in OnGetCellParams event.

Mode property
See also Example

Applies to
TSMImportBaseComponent component

Declaration
property Mode: TImportMode;

Description
You can change an import mode which will applied to data loading.
The description of values view at TImportMode topic.

Important note:
if you use the imUpdate, imAppendUpdate or imDelete mode, don't forget to define a
DatasetKeys property.

Options property
Example

Applies to
TSMImportBaseComponent component

Declaration
property Options: TSMIOptions;

Description
This is options which will be applied to import process. For example, you can define a
"silence" mode without any interaction with user (no warnings/errors to user).

RecordSeparator property
See also Example

Applies to
TSMImportBaseComponent component

Declaration
property RecordSeparator: TSMIRecordSeparator;

Description
You can select one from pre-defined record separators:
1. rsCustom - you have a custom record separator which is defined in
RecordSeparatorCustom property
2. rsCRLF - the separator is a DOS/Windows standard separator of text files CR+LF
(#13#10)
3. rsCR - the separator is a standard separator of text files (#13)
4. rsLF - the separator is a standard UNIX separator of text files (#10)

RecordSeparatorCustom property
See also Example

Applies to
TSMImportBaseComponent component

Declaration
property RecordSeparatorCustom: string;

Description
If you want to use a custom separator between rows in text file and this separator is not
included in list of pre-defined separators, you must assign it to value of this property.

For example, RecordSeparatorCustom := #11#11. In this case automatically will be changed
a RecordSeparator property to rsCustom value.

RowFirst property
See also Example

Applies to
TSMImportBaseComponent component

Declaration
property RowFirst: Integer;

Description
This value is a number of record. Starting from this record the next records will be imported.
The any records which have a number less than RowFirst will be skipped and will not
loaded in destination dataset.

RowLast property
See also Example

Applies to
TSMImportBaseComponent component

Declaration
property RowLast: Integer;

Description
This value is a number of record. The any record which have a number less than RowLast
will be imported in destination dataset.
The any records which have a number greater than RowLast will be skipped and will not
loaded.

SourceFileName property

Applies to
TSMImportBaseComponent component

Declaration
property SourceFileName: string;

Description
This property is a file name with external data which must be imported.
For example, 'C:\INBOX\orders.txt' for text format, 'C:\BACKUPS\products.db' for Paradox
table or 'F:\SHARED\invoices.xls' for Excel spreadsheet.

TextQualifier property
See also Example

Applies to
TSMImportBaseComponent component

Declaration
property TextQualifier: TSMITextQualifier;

Description
You can select one from pre-defined text qualifiers for text fields:
1. tqNone - your qualifier is an empty (disabled)
2. tqCustom - you have a custom text qualifier which is defined in TextQualifierCustom
property
3. tqQuot - you have a standard qualifier as quote (")
4. tqApos - you have a standard qualifier as apos (')

When TextQualifier (or TextQualifierCustom) defines a some value as qualifier, then import
engine wait each string value as TextQualifierCustom+TextValue+TextQualifierCustom.
For example, for the next text row in source text file
"Ukraine";"Kiev";"East Europe";603700;52000000
you must define a TextQualifier property as tqQuot

TextQualifierCustom property
See also Example

Applies to
TSMImportBaseComponent component

Declaration
property TextQualifierCustom: Char;

Description
If you want to use a custom text qualifier (a first and last char in any string data) for text file
and this qualifier is not included in list of pre-defined qualifiers, you must assign it to value of
this property.

For example, TextQualifierCustom := '-'. In this case automatically will be changed a
TextQualifier property to tqCustom value.

TitleStatus property
See also Example

Applies to
TSMImportBaseComponent component

Declaration
property TitleStatus: string;

Description
If you want, here you can define a custom caption for animated status dialog.

If you'll not define it, then will be used a default "Importing..." text (depends from translated
multilingual resources).

LoadSpecification method
See also Example

Applies to
TSMImportBaseComponent component

Declaration
class procedure LoadSpecification(strFileName: string);

Description
This method allow to load a some prepared specification with all pre-defined settings for
importing.
For example, this specification can be created in SaveSpecification method or saved in
wizard component.

Also this specification file can be prepared during export process.

Extension method
See also

Applies to
TSMImportBaseComponent component

Declaration
function Extension: string; virtual;

Description
This virtual method allow to receive a default extension of file. For example, the 'XLS' for
MS Excel spreadsheets or 'XML' for XML-file with data.

FillFileFilters method
See also

Applies to
TSMImportBaseComponent component

Declaration
function FillFileFilters: string; virtual;

Description
This method returns a list of strings and file extensions which are supported by import
component. For example, the TSMImportFromText component support the next file filters:
1. Text files (*.txt)
2. Comma-delimited file (*.csv)
3. Data file (*.dat)
4. Text file (*.prn)
5. Tabular file (*.tab)
6. ASCII file (*.asc)

This method will be executed before any open/save dialog opening when will be generated
a values for filters.

AboutSMI method
See also

Applies to
TSMImportBaseComponent component

Declaration
procedure AboutSMI;

Description
To call this method if you want to see a dialog with short information about SMImport suite
and authors. Also here you can check a version of used SMImport version.

Execute method
See also Example

Applies to
TSMImportBaseComponent component

Execute method performs the import operation specified by other properties.

Declaration
procedure Execute;

Description
When you finished to set the properties with import settings, call Execute to perform the
operation. As a minimum, the Dataset, SourceFileName and ImportMode properties must
be defined.

After calling Execute, the data from external source file will be loaded in dataset.

SaveSpecification method
See also Example

Applies to
TSMImportBaseComponent component

Declaration
procedure SaveSpecification(SpecName, FileName: string; ShowDialog:
Boolean);

Description
This method allow to save the current settings of import component into some file with
specified name (it's an user friendly caption which he/she which will view in list of
specifications).

If an external file with the same name already exists, it is deleted and a new file with
specification is created in its place.

OnAfterExecute event
See also Example

Applies to
TSMImportBaseComponent component

Declaration
property OnAfterExecute: TNotifyEvent;

Description
This event will be called after each import process so using it you can activate some own
actions which must be executed after import.

The Sender parameter is an import component which finished a data loading.

OnAfterRecordEvent event
See also Example

Applies to
TSMImportBaseComponent component

Declaration
property OnAfterRecordEvent: TAfterRecordEvent;

Description
This event allow to control an import process - this fires after each imported rows (no matter
- successful or not).
Using this event you can cancel an import process in any moment or log any action.

OnBeforeExecute event
See also Example

Applies to
TSMImportBaseComponent component

Declaration
property OnBeforeExecute: TNotifyEvent;

Description
This event will be called before each import process activation. So here you can activate
some own actions which must be executed before import.

The Sender parameter is an import component which will start a data loading.

OnBeforeRecordEvent event
See also Example

Applies to
TSMImportBaseComponent component

Declaration
property OnBeforeRecordEvent: TBeforeRecordEvent;

Description
This event allow to define global values for each parsed value before applying to fields. Also
here you can skip some row from loading (just by your custom condition).

The Fields parameter is a list of parsed field names.
The Values parameter is a variant array with parsed value for each field name.

To skip a row from loading just assign a False value to Accept parameter. By default the
Accept is True.

OnErrorEvent event
See also Example

Applies to
TSMImportBaseComponent component

Declaration
property OnErrorEvent: TErrorEvent;

Description
In this event you can control any error during importing.

The Sender is a current import component where was raised the exception.
The Error is standard exception type.

If you want to stop a process, you must return True in Abort parameter.
But if you want to ignore this error and continue the import, just return a False.

In this event you can handle the any errors and, for example, to save the "bad" values in
some buffer for next modification and re-loading.

OnGetCellParams event
See also Example

Applies to
TSMImportBaseComponent component

Declaration
property OnGetCellParams: TGetCellParamsEvent;

Description
In this event you can control import process in own hands. The event will be called for each
imported value (each field processing for any records).

If you want to change a result value which will be imported in destination dataset, you must
change a Value parameter.
The Field parameter will show a field of destination dataset where will be placed a value.
The Sender is an import component which was used for data loading and parsing.

OnCreateStructure event
See also Example

Unit
SMIBase

Declaration
property OnCreateStructure: TSMIOnCreateStructure;

Description
If you want to create a dataset with structure from parsed external file and only after that to
load data, then in this event you can do it.

Here you will receive a collection of parsed columns with all required information - field
name, width, data type etc

This event is called before real import process will be started.

TSpreadSheetCells component
See also Properties Methods

Unit
SMCells

Description
This class is an analogue of virtual array - the unlimited list with access through columns
like array.

The SMImport suite use this internal class for support of "spreadsheet" files - possibility to
read/load a spreadsheet into virtual array.

ColCount property
See also

Applies to
TSpreadSheetCells component

Declaration
property ColCount: Word;

Description
Return a number of columns in virtual array of spreadsheet.

RowCount property
See also

Applies to
TSpreadSheetCells component

Declaration
property RowCount: Word;

Description
Return a number of rows in virtual array of spreadsheet.

AddRow method
See also

Applies to
TSpreadSheetCells component

Declaration
function AddRow(i: Integer): Integer;

Description
This method allow to add a row with some specific index into virtual array.

GetRow method
See also

Applies to
TSpreadSheetCells component

Declaration
function GetRow(Row: Integer; NeedAdd: Boolean): Integer;

Description
This method allow to read a row from virtual array.

If NeedAdd parameter is True and row is not exist in virtual array, then row will be added
and returned as result.

GetValue method
See also

Applies to
TSpreadSheetCells component

Declaration
function GetValue(Col, Row: Integer): Variant;

Description
This method allow to read a value from virtual array by specific row and specific column
number.

RemoveRow method
See also

Applies to
TSpreadSheetCells component

Declaration
procedure RemoveRow(i: Integer);

Description
This method allow to remove a row from virtual array.

SetValue method
See also

Applies to
TSpreadSheetCells component

Declaration
procedure SetValue(Col, Row: Integer; Value: Variant);

Description
This method allow to write a value into virtual array by specific row and specific column
number.

TCustomSpreadSheet component
See also Properties

Unit
SMCells

Description
This is an internal class for support of "spreadsheet" files - possibility to read/load a
spreadsheet into virtual array using events.

The components for MS Excel, Lotus 1-2-3, QuattroPro spreadsheets are inherited from this
basic type.

FileName property

Applies to
TCustomSpreadSheet component

Declaration
property FileName: string;

Description
Defines a file name from which can be loaded a spreadsheet.

OnCellValue property

Applies to
TCustomSpreadSheet component

Declaration
property OnCellValue: TOnCellValue;

Description
Using this event you can load a value to any cell of virtual array.

OnColumnWidth property

Applies to
TCustomSpreadSheet component

Declaration
property OnColumnWidth: TOnColumnWidth;

Description
Using this event you can change a width of any column from virtual array.

OnDimensions property

Applies to
TCustomSpreadSheet component

Declaration
property OnDimensions: TOnDimensions;

Description
Using this event you can define the row and column numbers in spreadsheet.

OnRowHeight property

Applies to
TCustomSpreadSheet component

Declaration
property OnRowHeight: TOnRowHeight;

Description
Using this event you can define a height of any row from virtual array.

TSpreadSheet component
See also Methods

Unit
SMCells

Description
This is an internal class for support of "spreadsheet" files - possibility to read/load a
spreadsheet into virtual array from external file.

The components for MS Excel, Lotus 1-2-3, QuattroPro spreadsheets are inherited from this
basic type.

LoadFromFile method

Applies to
TSpreadSheet component

Declaration
procedure LoadFromFile(const FileName: string); virtual;

Description
This is a virtual method which allow to realize a file reading and filling of virtual array using
events.

TSMImportFromBDE component
See also Properties Methods Events

Unit
SMI2BDE

Description
This component allows to load a data from external Paradox or DBase table.

You must understand that this component uses a BDE so if you'll use it, then on client
computers must be installed BDE.

TableType property

Applies to
TSMImportFromBDE component

Declaration
property TableType: TTableType;

Description
When you use a BDE loading you must define which table format you want to use: Paradox
or DBase.

 TSMImportFromDataSet component
See also Properties Events

Unit
SMI2DS

Description
This component allows to load a data from one dataset to other.

SourceDataset property
See also

Applies to
TSMImportFromDataSet component

Declaration
property SourceDataset: TDataSet;

Description
Using this property you can define a dataset which will "deploy" a data for loading. The
records from this dataset will be imported into dataset which defined in Dataset property.

TMSExcel component
Properties Methods

Unit
SMXLS

Description
This basic component allow to read the MS Excel's spreadsheet into virtual array (unlimited
list of cells). The reading is a direct and doesn't use any external libraries, OLE, DDE etc

This component can be used for MS Excel loading into TStringGrid component.

SheetIndex property

Applies to
TMSExcel component

Declaration
property SheetIndex: Integer;

Description
This property is readonly only and is used for access to data in specific sheet of
spreadsheet file.

Version property
See also

Applies to
TMSExcel component

Declaration
property Version: TExcelVersion;

Description
This property is readonly. You can check a version of MS Excel's spreadsheet that was
loaded from file.

Keeps a version of last loaded spreadsheet.

TQuattroPro component
Properties Methods

Unit
SMWQ

Description
This basic component allow to read the QuattroPro's spreadsheet into virtual array
(unlimited list of cells). The reading is a direct and doesn't use any external libraries, OLE,
DDE etc

This component can be used for QuattroPro loading into TStringGrid component.

Version property
See also

Applies to
TQuattroPro component

Declaration
property Version: TWQVersion;

Description
This property is readonly. You can check a version of QuattroPro's spreadsheet that was
loaded from file.

Keeps a version of last loaded spreadsheet.

TLotus123 component
Properties Methods

Unit
SMWKS

Description
This basic component allow to read the Lotus 1-2-3's spreadsheet into virtual array
(unlimited list of cells). The reading is a direct and doesn't use any external libraries, OLE,
DDE etc

This component can be used for Lotus 1-2-3 loading into TStringGrid component.

Version property
See also

Applies to
TLotus123 component

Declaration
property Version: TWKSVersion;

Description
This property is readonly. You can check a version of Lotus 1-2-3's spreadsheet that was
loaded from file.

Keeps a version of last loaded spreadsheet.

TSMImportFromCell component
Properties Methods Events

Unit
SMI2Cell

Description
This component is declared as basic for loading spreadsheets (MS Excel, QuattroPro, Lotus
1-2-3 etc) into dataset.

 TSMImportFromHTML component
See also Properties Methods Events

Unit
SMI2HTML

Description
This component allows to load a data from external HTML file.

The import process does not use the MS Internet Explorer application for data
transformation. The TSMImportFromHTML component will read a first table from HTML file
directly.

Supported the HTML files which are generate by SMExport suite.

 TSMImportFromText component
See also Properties Methods Events

Unit
SMI2TXT

Description
This component allows to load a data from external text file.

Supported a lot of custom settings like file format (fixed or CSV), record separator, field
delimiter, text qualifier etc

Also automatically supported the field mapping in case when first row in text file contains
field names.

 TSMImportFromWKS component
See also Methods Events

Unit
SMI2WKS

Description
This component allows to load a data from external Lotus 1-2-3 spreadsheet.

The import process does not use the Lotus 1-2-3 application for data reading so on client
computers the Lotus 1-2-3 is not necessary. The TSMImportFromWKS component will read
a spreadsheet directly.

Supported any Lotus 1-2-3 versions: 1.0, 2.0 and WR1.

 TSMImportFromQuattro component
See also Methods Events

Unit
SMI2WQ

Description
This component allows to load a data from external QuattroPro spreadsheet.

The import process does not use the Corel QuattroPro application for data reading so on
client computers the QuattroPro is not necessary. The TSMImportFromQuattro component
will read a spreadsheet directly.

Supported any QuattroPro versions: 1.0 and 2.0.

 TSMImportFromXLS component
See also Methods Events

Unit
SMI2XLS

Description
This component allows to load a data from external MS Excel spreadsheet.

The import process does not use the MS Excel application for data reading so on client
computers the MS Excel is not necessary. The TSMImportFromXLS component will read a
spreadsheet directly.

Supported any MS Excel versions: 2.0, 3.0, 4.0, 5.0, 7.0 and 8.0.

 TSMImportFromXML component
See also Properties Methods Events

Unit
SMI2XML

Description
This component allows to load a data from external XML file.

The import process does not use the MS Internet Explorer application for data
transformation. The TSMImportFromXML component will read a XML file directly.

Supported the XML files which are generate by TClientDataset component (see SaveToFile
method) and SMExport suite as well.

TSMIUserAccess object
See also Properties Methods

Unit
SMIWiz

Description
This type declared for support of restrictions in wizard component. Using properties of this
type you can control end-user's control to any parameter of import.

For example, you can disable a changing of type for source file and set a field mappings as
read only.

FieldAdjustment property
See also

Applies to
TSMIUserAccess object

Declaration
property FieldAdjustment: TSMIRestriction;

Description
This property declared for restrictions which you can place for your end-users in wizard
dialog.

1. irDisabled mean that user can't access to field adjustments. For example, he/she can't
define the breaks between fields in text file
2. irReadOnly mean that user can view field adjustments but can't change
3. irReadWrite mean that user have a full access to field adjustments without any
restrictions

FieldDelimiter property
See also

Applies to
TSMIUserAccess object

Declaration
property FieldDelimiter: TSMIRestriction;

Description
This property declared for restrictions which you can place for your end-users in wizard
dialog.

1. irDisabled mean that user can't access to a field delimiter setting
2. irReadOnly mean that user can view a current setting for a field delimiter but can't change
3. irReadWrite mean that user have a full access to a field delimiter without any restrictions

FieldMapping property
See also

Applies to
TSMIUserAccess object

Declaration
property FieldMapping: TSMIRestriction;

Description
This property declared for restrictions which you can place for your end-users in wizard
dialog.

1. irDisabled mean that user can't access to value of grid with mappings between fields in
destination and source data
2. irReadOnly mean that user can view a current field mappings but can't change
3. irReadWrite mean that user have a full access to grid with field mappings without any
restrictions

FirstRow property
See also

Applies to
TSMIUserAccess object

Declaration
property FirstRow: TSMIRestriction;

Description
This property declared for restrictions which you can place for your end-users in wizard
dialog.

1. irDisabled mean that user can't access to value of edit box where can be changed a first
row value
2. irReadOnly mean that user can view edit box with first row value but can't change
3. irReadWrite mean that user have a full access to edit box with first row value without any
restrictions

ImportMode property
See also

Applies to
TSMIUserAccess object

Declaration
property ImportMode: TSMIRestriction;

Description
This property declared for restrictions which you can place for your end-users in wizard
dialog.

1. irDisabled mean that user can't access to value of radio box where can be changed an
import mode
2. irReadOnly mean that user can view group box with import modes but can't change
3. irReadWrite mean that user have a full access to group box with import modes without
any restrictions

LastRow property
See also

Applies to
TSMIUserAccess object

Declaration
property LastRow: TSMIRestriction;

Description
This property declared for restrictions which you can place for your end-users in wizard
dialog.

1. irDisabled mean that user can't access to value of edit box where can be changed a last
row value
2. irReadOnly mean that user can view edit box with last row value but can't change
3. irReadWrite mean that user have a full access to edit box with last row value without any
restrictions

PreviewData property
See also

Applies to
TSMIUserAccess object

Declaration
property PreviewData: TSMIRestriction;

Description
This property declared for restrictions which you can place for your end-users in wizard
dialog.

1. irDisabled mean that user can't access to a mode of preview grid with example of loaded
data
2. irReadOnly mean that user can view a current setting for a mode of preview grid with
example of loaded data but can't change
3. irReadWrite mean that user have a full access to a mode of preview grid with example of
loaded data without any restrictions

RecordSeparator property
See also

Applies to
TSMIUserAccess object

Declaration
property RecordSeparator: TSMIRestriction;

Description
This property declared for restrictions which you can place for your end-users in wizard
dialog.

1. irDisabled mean that user can't access to record separator setting
2. irReadOnly mean that user can view a current setting for record separator but can't
change
3. irReadWrite mean that user have a full access to record separator without any
restrictions

SourceFileName property
See also

Applies to
TSMIUserAccess object

Declaration
property SourceFileName: TSMIRestriction;

Description
This property declared for restrictions which you can place for your end-users in wizard
dialog.

1. irDisabled mean that user can't access to a name of loaded external file
2. irReadOnly mean that user can view a current setting for a name of loaded external file
but can't change
3. irReadWrite mean that user have a full access to a name of loaded external file without
any restrictions

Specification property
See also

Applies to
TSMIUserAccess object

Declaration
property Specification: Boolean;

Description
This property declared for restrictions which you can place for your end-users in wizard
dialog.

If you will set Specification as True then in wizard dialog will be available mode where end-
user can load/save/delete the specifications.
Else end-user couldn't access to this mode.

TableType property
See also

Applies to
TSMIUserAccess object

Declaration
property TableType: TSMIRestriction;

Description
This property declared for restrictions which you can place for your end-users in wizard
dialog.

1. irDisabled mean that user can't access to a format of loaded external file
2. irReadOnly mean that user can view a current setting for format of loaded external file but
can't change
3. irReadWrite mean that user have a full access to format of loaded external file without
any restrictions

TextQualifier property
See also

Applies to
TSMIUserAccess object

Declaration
property TextQualifier: TSMIRestriction;

Description
This property declared for restrictions which you can place for your end-users in wizard
dialog.

1. irDisabled mean that user can't access to a text qualifier
2. irReadOnly mean that user can view a current setting for a text qualifier but can't change
3. irReadWrite mean that user have a full access to a text qualifier without any restrictions

TextType property
See also

Applies to
TSMIUserAccess object

Declaration
property TextType: TSMIRestriction;

Description
This property declared for restrictions which you can place for your end-users in wizard
dialog.

1. irDisabled mean that user can't access to a type of text file
2. irReadOnly mean that user can view a current setting for type of a text file but can't
change
3. irReadWrite mean that user have a full access to a type of text file without any restrictions

Create method

Applies to
TSMIUserAccess object

Creates and instance of a TSMIUserAccess object.

Declaration
constructor Create(AOwner: TComponent); virtual;

Description
You would normally never create an object of this class. This object is created by and bound
to a TSMIWizardDlg component.

 TSMIWizardDlg component
See also Properties Methods Events

Unit
SMIWiz

Description
The TSMIWizardDlg is a compound component which allow to load a data from any
supported external files.

The useful wizard form with friendly interface and step-by-step instructions helps to solve
any task.

Also component can be used as compound importing without any visualization and
interaction with end-user.

If you will give a wizard to your end-user, you can still control a process in own hands using
strong restrictions in access to settings.

Picture property
See also Example

Applies to
TSMIWizardDlg component

Declaration
property Picture: TPicture;

Description
You can assign own logo which will be displayed in wizard component. If you'll not assign a
picture, will be displayed a default picture.

TableType property
See also

Applies to
TSMIWizardDlg component

Declaration
property TableType: TTableTypeImport;

Description
You can define a default format of external file for wizard component. According to user's
permissions, you can enable/disable a format changing.

IMPORTANT:
If you'll set a teParadox or teDBase as default but on client computer the BDE is not
installed, then your default TableType will be changed on first from available formats.

Title property
See also Example

Applies to
TSMIWizardDlg component

Declaration
property Title: TCaption;

Description
If you want, here you can define a custom caption for wizard dialog.

If you'll not define it, then will be used a default "Import Wizard" text (depends from
translated multilingual resources).

UseDisplayNames property

Applies to
TSMIWizardDlg component

Declaration
property UseDisplayNames: Boolean;

Description
Using this property you can define to show your customized field names for displaying to
user.

If the UseDisplayNames is True, then in grid where user can define a field mappings,
he/she will see a DisplayName property of each field of your dataset.
Else will be displayed the FieldName property for fields.

UserAccess property
See also

Applies to
TSMIWizardDlg component

Declaration
property UserAccess: TSMIUserAccess;

Description
This property allow to restrict an end-user access to properties in wizard component. Using
properties of this type you can control end-user's control to any parameter of import.

For example, you can disable a changing of type for source file and set a field mappings as
read only.

Execute method
See also Example

Applies to
TSMIWizardDlg component

Declaration
function Execute: TModalResult;

Description
This method allow to execute the importing with wizard displaying.

After running will be displayed a visual dialog where user can define any import property
step-by-step in wizard mode. After definition of any properties end-user can activate the
data loading.

You can control any step in own hands: to restrict any property, define the default values etc

ExecuteWithoutDialog method
See also Example

Applies to
TSMIWizardDlg component

Declaration
procedure ExecuteWithoutDialog;

Description
This method allow to execute the importing without wizard displaying.

It's useful when you want to work with compound import component (and not have a lot of
components for each import type) but you want to control all process in own hands without
interaction with end-user.

Just set the properties of importing and call this method for data loading.

OnGetSpecifications event
See also Example

Applies to
TSMIWizardDlg component

Declaration
property OnGetSpecifications: TSMIGetSpecificationsEvent;

Description
If you want to customize a list of specifications which will use the end-user in wizard
component, then in this event you can do it.
Here you can load own list of specifications instead default. By default (without code in this
event) will be loaded smi-files from application folder.

As result you must fill the lstFiles list by the next rule:
the name of specification which will be displayed in list box is item of list. The file name with
this specification must be loaded as Object to this item.

Registration By credit card

Visa/Discover/MasterCard/AmericanExpress 50 EUR for full package with sources

For technical support or comments about this program, you may contact Mike
Shkolnik at: mailto:mshkolnik@scalabium.com

For your convenience we have contracted another companies (registrators), RegSoft.Com,
USA and ShareIT, Germany to process any orders you may wish to place with your Visa,
Discover, MasterCard or other credit cards.

Registrators can be easily contacted for orders only via any of the following methods:

ONLINE ORDERS

You may register SMImport suite via an online order form by pointing your browser to:
1. ShareIt: https://secure.element5.com/register.html?productid=137994
2. Avangate: https://secure.avangate.com/order/checkout.php?
PRODS=4534078
3. PayPro: https://secure.payproglobal.com/orderpage.aspx?
products=51385

PHONED ORDERS
ShareIt: +49-221-2407279
(US and Canada customers please call 1-800-903-4152)

FAXED ORDERS
Available 24 hours. International & business orders are encouraged.
ShareIt: 724-850-8187 (US customers)
(customers outside the US: +49-221-2407278)

US CHECKS AND CASH ORDERS
ShareIt:
European office: US office:
element 5 AG ShareIt! Inc.
Vogelsanger Strasse 78 PO Box 844
Greensburg, PA 15601-0844
D-50823 Koln USA
Germany
tel. +49-221-2407279 tel. 724-850-8186
fax. +49-221-2407278 fax. 724-850-8187

EMAILED ORDERS
ShareIt: register@shareit.com

Please make sure to include the program ID:

mailto:mshkolnik@scalabium.com
https://secure.element5.com/register.html?productid=137994
https://secure.avangate.com/order/checkout.php?PRODS=4534078
https://secure.payproglobal.com/orderpage.aspx?products=51385
mailto:register@shareit.com

ShareIt: 137994

Please provide (or be prepared to provide) the following information:
+ The program you are registering.
+ Your mailing address.
+ Your Visa, Discover, or MasterCard # and it's expiration date (if using credit card).
+ Your EMail address (so registrator can send you email confirming your order and so we
can contact you easily with important follow-up information or upgrade announcements.

Registration by mail order

Select Print Topic... from the File menu to print this form.

Item: SMImport suite for Delphi/C++Builder
Price: 50 EUR with sources or 35 EUR without sources

Please register my copy of SMImport suite for Delphi/C++Builder,
I am sending a check or money order for $___________

Name:__
Company:_____________________________________
Address1:____________________________________
Address2:____________________________________
City:__
State:_______________________Zip:____________
Country:_____________________________________
Phone:_______________________________optional
Email:_______________________________

Please send completed form with payment to:
Mike Shkolnik
ul.Pragskaya 4, kv.39
Kiev, 02090
Ukraine

Properties

 Run-time only Key properties
 BooleanFalse
 BooleanTrue
 DateOrder
 DateSeparator
 DecimalSeparator
 ThousandSeparator
 FourDigitYear
 LeadingZerosInDate
 TimeSeparator

TSMIDataFormats - Example

procedure ApplyFormats(smi: TSMImportBaseComponent);
begin
smi.DataFormats.BooleanFalse := 'No';
smi.DataFormats.BooleanFalse := 'Yes';

smi.DataFormats.DateOrder := doYMD; //yy-mm-dd
smi.DataFormats.DateSeparator := '-';
smi.DataFormats.FourDigitYear := False;
smi.DataFormats.LeadingZeroInDate := True;

smi.DataFormats.TimeSeparator := ':';

smi.DataFormats.DecimalSeparator := '.';
end;

SMIBase unit

In this unit was declared a base types and base TSMImportBaseComponent component.

Components
TSMImportBaseComponent

Objects
TSMIDataFormats

Types
TAfterRecordEvent
TBeforeRecordEvent
TErrorEvent
TGetCellParamsEvent
TImportFormatTypes
TImportMode
TSMIAbout
TSMIDateOrder
TSMIFieldDelimiter
TSMIOption
TSMIOptions
TSMIRecordSeparator
TSMIStatistic
TSMITextQualifier
TTableTypeImport

Routines
AboutSMImport

See also

TSMIDataFormats

BooleanTrue
DateOrder
DateSeparator
DecimalSeparator
ThousandSeparator
FourDigitYear
LeadingZeroInDate
TimeSeparator

See also

TSMIDataFormats

BooleanFalse
DateOrder
DateSeparator
DecimalSeparator
ThousandSeparator
FourDigitYear
LeadingZeroInDate
TimeSeparator

See also

TSMIDateOrder
TSMIDataFormats

BooleanFalse
BooleanTrue
DateSeparator
DecimalSeparator
ThousandSeparator
FourDigitYear
LeadingZeroInDate
TimeSeparator

See also

TSMIDataFormats

BooleanFalse
BooleanTrue
DateOrder
DecimalSeparator
ThousandSeparator
FourDigitYear
LeadingZeroInDate
TimeSeparator

See also

TSMIDataFormats

BooleanFalse
BooleanTrue
DateOrder
DecimalSeparator
ThousandSeparator
FourDigitYear
LeadingZeroInDate
TimeSeparator

See also

TSMIDataFormats

BooleanFalse
BooleanTrue
DateOrder
DateSeparator
DecimalSeparator
ThousandSeparator
LeadingZeroInDate
TimeSeparator

See also

TSMIDataFormats

BooleanFalse
BooleanTrue
DateOrder
DateSeparator
DecimalSeparator
ThousandSeparator
FourDigitYear
TimeSeparator

See also

TSMIDataFormats

BooleanFalse
BooleanTrue
DateOrder
DateSeparator
DecimalSeparator
ThousandSeparator
FourDigitYear
LeadingZeroInDate

See also

TSMIWizardDlg
TSMImportFromText
TSMImportFromXLS
TSMImportFromWKS
TSMImportFromQuattro
TSMImportFromXML
TSMImportFromHTML
TSMImportFromBDE
TSMImportFromDataset

Properties

 Run-time only Key properties
 About
 AnimatedStatus
 DataFormats
 DataSet
 DatasetKeys
 FieldDelimiter
 FieldDelimiterCustom
 Fixed
 Mappings
 Mode
 Options
 RecordSeparator
 RecordSeparatorCustom
 RowFirst
 RowLast
 SourceFileName
 Statistic
 TextQualifier
 TextQualifierCustom
 TitleStatus

Methods

 Key methods
 LoadSpecification

Create{linkDelphi=Create_Method}
Destroy{linkDelphi=Destroy_Method}

 Extension
 FillFileFilters
 AboutSMI
 Execute
 SaveSpecification

Events

 Key events
 OnAfterExecute
 OnAfterRecordEvent
 OnBeforeExecute
 OnBeforeRecordEvent
 OnErrorEvent
 OnGetCellParams
 OnCreateStructure

See also

AboutSMI
AboutSMImport

See also

TSMIWizardDlg
TSMImportFromText
TSMImportFromXLS
TSMImportFromWKS
TSMImportFromQuattro
TSMImportFromXML
TSMImportFromHTML
TSMImportFromBDE
TSMImportFromDataset

See also

TSMIDataFormats

See also

TSMIWizardDlg
TSMImportFromText
TSMImportFromXLS
TSMImportFromWKS
TSMImportFromQuattro
TSMImportFromXML
TSMImportFromHTML
TSMImportFromBDE
TSMImportFromDataset

See also

Dataset
Mappings
Mode

See also

TSMIFieldDelimiter

FieldDelimiterCustom
Fixed
RecordSeparator
RecordSeparatorCustom
TextQualifier
TextQualifierCustom

FieldDelimiter property example

FieldDelimiter := fdComma;

See also

FieldDelimiter
Fixed
RecordSeparator
RecordSeparatorCustom
TextQualifier
TextQualifierCustom

FieldDelimiterCustom property example

FieldDelimiterCustom := '|';

See also

FieldDelimiter
FieldDelimiterCustom
RecordSeparator
RecordSeparatorCustom
TextQualifier
TextQualifierCustom

Fixed property example

smi.Fixed := True;
smi.Mappings.Clear;
smi.Mappings.Add('Account=Text1-10');
smi.Mappings.Add('Amount=Text12-15');

See also

FieldDelimiter
FieldDelimiterCustom
Fixed
RecordSeparator
RecordSeparatorCustom
TextQualifier
TextQualifierCustom

Expressions in Mappings

Mappings property example

The correct Mappings property is most important key of success data loading.

The field mappings are correspondence between fields in Dataset (destination) and fields in
text file (source data). So when you dropped an import component on own form, select this
component and in Object Inspector you must define a Mappings property by the next rule:
1. if you have a comma-delimited text (the each field value is delimited by some character -
tabular or comma), then you must define as
AccountNo=Field1
Amount=Field2
...
Here number (after 'Field' string) is a number of field in each line of text and
AccountNo/Amount/... are fields in your table. Also don't forget to set a Fixed property in
False.

2. If you have a "fixed width" text file (when each field in any row have a same width), then
you must describe a mapping in the next format:
Account=Text1-10
Amount=Text12-15
...
Here the first number (after 'Text' string) is start position of your field.
The second number (after '-' character) is end position of your field.

See also

Dataset
DatasetKeys
TImportMode

Mode property example

smi.Mode := imAppendUpdate;
smi.DatasetKeys := 'ID_CUSTOMER';

Options property example

{define an interaction with end-user (status dialog, error messages etc)}
smi.Options := smi.Options + [soShowMessage];

{define a silence mode without any interaction with end-user}
smi.Options := smi.Options - [soShowMessage];

See also

TSMIRecordSeparator

FieldDelimiter
FieldDelimiterCustom
Fixed
RecordSeparatorCustom
TextQualifier
TextQualifierCustom

RecordSeparator property example

RecordSeparator := rsCRLF;

See also

FieldDelimiter
FieldDelimiterCustom
Fixed
RecordSeparator
TextQualifier
TextQualifierCustom

RecordSeparatorCustom property example

RecordSeparatorCustom := #12;

See also

RowLast

RowFirst property example

{load a data starting from second row}
RowFirst := 2;

See also

RowFirst

RowLast property example

{limit up to 150 rows only}
RowLast := 150;

See also

TSMITextQualifier

FieldDelimiter
FieldDelimiterCustom
Fixed
RecordSeparator
RecordSeparatorCustom
TextQualifierCustom

TextQualifier property example

TextQualifier := tqApos;

See also

FieldDelimiter
FieldDelimiterCustom
Fixed
RecordSeparator
RecordSeparatorCustom
TextQualifier

TextQualifierCustom property example

TextQualifierCustom := '#';

See also

Picture
Title

TitleStatus property example

TitleStatus := 'Progress of data loading';

See also

SaveSpecification
TOnGetSpecifications

LoadSpecification method example

{1. load a specification with pre-defined settings}
smi.LoadSpecification('C:\ForLoad\remote_office.smi');

{2. start an import process}
smi.Execute;

See also

TableType

See also

Extension
TableType

See also

About
AboutSMImport

See also

ExecuteWithoutDialog

Execute method example

{1. load a specification with pre-defined settings}
smi.LoadSpecification('C:\ForLoad\remote_office.smi');

{2. start an import process}
smi.Execute;

See also

LoadSpecification
TOnGetSpecifications

SaveSpecification method example

{1. define the import properties}
smi.Fixed := True;
smi.Mappings.Clear;
smi.Mappings.Add('Account=Text1-10');
smi.Mappings.Add('Amount=Text12-15');

{2. save a specification}
smi.SaveSpecification('C:\ForLoad\remote_office.smi');

{3. start an import process}
smi.Execute;

See also

OnBeforeExecute

OnAfterRecordEvent
OnBeforeRecordEvent
OnErrorEvent

OnAfterExecute event example

begin
{show a text in status bar}
StatusBar.Text := 'Imported.';

ShowMessage(Format('Import is completed. Result statistic: %d processed, %d added, %d
updated, %d deleted, %d errors', [SMIComponent.Statistic.TotalImported,
SMIComponent.Statistic.TotalAdded, SMIComponent.Statistic.TotalUpdated,
SMIComponent.Statistic.TotalDeleted, SMIComponent.Statistic.TotalErrors])
end;

See also

OnBeforeRecordEvent
TAfterRecordEvent

OnAfterExecute
OnBeforeExecuteEvent
OnErrorEvent

OnAfterRecordEvent event example

begin
{stop an import process if added 50 records}
if SMIComponent.Statistic.TotalImported > 50 then
Abort := True
end;

See also

OnAfterExecute

OnAfterRecordEvent
OnBeforeRecordEvent
OnErrorEvent

OnBeforeExecute event example

begin
{show a text in status bar}
StatusBar.Text := 'Importing...';
end;

See also

OnAfterRecordEvent
TBeforeRecordEvent

OnAfterExecute
OnBeforeExecuteEvent
OnErrorEvent

OnBeforeRecordEvent event example

begin
{update a progress bar}
ProgressBar.Position := SMIComponent.Statistic.TotalImported;
end;

See also

TErrorEvent

OnBeforeRecordEvent
OnAfterRecordEvent

OnAfterExecute
OnBeforeExecuteEvent

OnErrorEvent event example

procedure TForm1.SMIWizardDlgErrorEvent(Sender: TObject;
Error: Exception; var Abort: Boolean);
begin
{add to internal log}
lbErrorLog.Items.Add(Error.Message);

{if we have more than 100 errors, then cancel an import process}
if (SMIWizardDlg.Statistic.TotalErrors > 100) then
Abort := True;
end;

See also

TGetCellParamsEvent
OnErrorEvent

OnGetCellParams event example

procedure TForm1.SMImportFromText(Sender: TObject; Field: TField; var Value:
Variant);
begin
if Assigned(Field) and
(Field.FieldName = 'CustomerID') then
begin
Value := 'UA' + VarToStr(Value);
end
end;

OnCreateStructure event - See also

TSMIColumn
TSMIColumns
TSMIOnCreateStructure

OnCreateStructure event - Example

procedure TForm1.SMImportFromCSVCreateStructure(Sender: TObject;
Columns: TSMIColumns);
var
i: Integer;
begin
{delete all current dataset fields}
ClientDataSet1.Close;
ClientDataSet1.FieldDefs.Clear;

{create a structure by parsed columns from CSV}
for i := 0 to Columns.Count-1 do
begin
if Columns[i].Size = 0 then
Columns[i].Size := 30;

case Columns[i].DataType of
itString: ClientDataSet1.FieldDefs.Add(Columns[i].FieldName, ftString, Columns[i].Size,
False);
itInteger: ClientDataSet1.FieldDefs.Add(Columns[i].FieldName, ftInteger, 0, False);
itFloat: ClientDataSet1.FieldDefs.Add(Columns[i].FieldName, ftFloat, 0, False);
itDateTime: ClientDataSet1.FieldDefs.Add(Columns[i].FieldName, ftDateTime, 0, False);
itDate: ClientDataSet1.FieldDefs.Add(Columns[i].FieldName, ftDate, 0, False);
itTime: ClientDataSet1.FieldDefs.Add(Columns[i].FieldName, ftTime, 0, False);
itBoolean: ClientDataSet1.FieldDefs.Add(Columns[i].FieldName, ftBoolean, 0, False);
else
ClientDataSet1.FieldDefs.Add(Columns[i].FieldName, ftString, 10, False);
end;
end;
ClientDataSet1.CreateDataset;

{open a dataset with created fields (from text file)}
ClientDataSet1.Active := True;

{fill default correspondence between fields in dataset and columns in CSV}
SMImportFromCSV.Mappings.Clear;
SMImportFromCSV.Columns2Mapping;
end;

See also

PSpreadSheetRow
TCustomSpreadCols

TCustomSpreadSheet
TSpreadSheet

Properties

 Run-time only Key properties
 ColCount
 RowCount

Methods

 Key methods
Destroy{linkDelphi=Destroy_Method}

 AddRow
 GetRow
 GetValue

Clear{linkDelphi=Clear_Method}
 RemoveRow
 SetValue

SMCells unit
See also

<<< Description of the unit >>>

Components
TSpreadSheetCells
TCustomSpreadSheet
TSpreadSheet

Types
PSpreadSheetRow
TOnCellValue
TOnColumnWidth
TOnDimensions
TOnRowHeight
TSpreadSheetCols
TSpreadSheetRow

Constants
MAXCol
MAXRow

See also

RowCount

See also

ColCount

See also

GetRow
RemoveRow

See also

AddRow
RemoveRow

See also

SetValue

See also

AddRow
GetRow

See also

GetValue

See also

TSpreadSheet
TMSExcel
TQuattroPro
TLotus123

Properties

 Run-time only Key properties
 FileName
 OnCellValue
 OnColumnWidth
 OnDimensions
 OnRowHeight

See also

TCustomSpreadSheet

Methods

 Key methods
Create{linkDelphi=Create_Method}
Destroy{linkDelphi=Destroy_Method}

 LoadFromFile

See also

TSMImportBaseComponent
TSMIWizardDlg
TSMImportFromText
TSMImportFromXLS
TSMImportFromWKS
TSMImportFromQuattro
TSMImportFromXML
TSMImportFromHTML
TSMImportFromDataset

Properties

 Run-time only Key properties
 TableType

About
AnimatedStatus
DataFormats
DataSet
DatasetKeys
Mappings
Mode
Options
RowFirst
RowLast
Statistic
TitleStatus

Methods

 Key methods
Create{linkDelphi=Create_Method}

LoadSpecification
Destroy{linkDelphi=Destroy_Method}
Extension
FillFileFilters
AboutSMI
Execute
SaveSpecification

Events

OnAfterExecute
OnAfterRecordEvent
OnBeforeExecute
OnBeforeRecordEvent
OnErrorEvent
OnGetCellParams

SMI2BDE unit
See also

In this unit was declared a TSMImportFromBDE component for importing from Paradox and
DBase tables.

Components
TSMImportFromBDE

Routines
GetAvailableImportFormats

See also

TSMImportBaseComponent
TSMIWizardDlg
TSMImportFromText
TSMImportFromXLS
TSMImportFromWKS
TSMImportFromQuattro
TSMImportFromXML
TSMImportFromHTML
TSMImportFromBDE

Properties

 Run-time only Key properties
 SourceDataset

About
AnimatedStatus
DataFormats
DataSet
DatasetKeys
Mappings
Mode
Options
RowFirst
RowLast
Statistic
TitleStatus

Events

OnAfterExecute
OnAfterRecordEvent
OnBeforeExecute
OnBeforeRecordEvent
OnErrorEvent
OnGetCellParams

SMI2DS unit
See also

In this unit was declared TSMImportFromDataset component which allow to transfer a data
from one dataset to other.

Components
TSMImportFromDataSet

See also

Dataset
SourceFileName

Properties

 Run-time only Key properties
 SheetIndex
 Version

Methods

 Key methods
Create{linkDelphi=Create_Method}
Destroy{linkDelphi=Destroy_Method}
LoadFromFile{linkDelphi=LoadFromFile_Method}

SMXLS unit
See also

In this unit is declared a component for direct reading of MS Excel spreadsheets.

Components
TMSExcel

Types
TExcelVersion

See also

TExcelVersion

Properties

 Run-time only Key properties
 Version

Methods

 Key methods
LoadFromFile{linkDelphi=LoadFromFile_Method}

SMWQ unit
See also

In this unit is declared a component for direct reading of Corel QuattroPro spreadsheets.

Components
TQuattroPro

Types
TWQVersion

See also

TWQVersion

Properties

 Run-time only Key properties
 Version

Methods

 Key methods
LoadFromFile{linkDelphi=LoadFromFile_Method}

SMWKS unit
See also

In this unit is declared a component for direct reading of Lotus 1-2-3 spreadsheets.

Components
TLotus123

Types
TWKSVersion

See also

TWKSVersion

Properties

 Run-time only Key properties
RowFirst{linkDelphi=RowFirst_Property}
RowLast{linkDelphi=RowLast_Property}
SourceFileName{linkDelphi=SourceFileName_Property}

About
AnimatedStatus
DataFormats
DataSet
DatasetKeys
Mappings
Mode
Options
Statistic
TitleStatus

Methods

 Key methods
Destroy{linkDelphi=Destroy_Method}

LoadSpecification
Create{linkDelphi=Create_Method}
Extension
FillFileFilters
AboutSMI
Execute
SaveSpecification

Events

OnAfterExecute
OnAfterRecordEvent
OnBeforeExecute
OnBeforeRecordEvent
OnErrorEvent
OnGetCellParams

SMI2Cell unit
See also

In this unit is declared a basic component for loading spreadsheets (MS Excel, QuattroPro,
Lotus 1-2-3 etc) into dataset.

Components
TSMImportFromCell

See also

TSMImportBaseComponent
TSMIWizardDlg
TSMImportFromText
TSMImportFromXLS
TSMImportFromWKS
TSMImportFromQuattro
TSMImportFromXML
TSMImportFromBDE
TSMImportFromDataset

Properties

 Run-time only Key properties
RowFirst{linkDelphi=RowFirst_Property}
RowLast{linkDelphi=RowLast_Property}
SourceFileName{linkDelphi=SourceFileName_Property}

About
AnimatedStatus
DataFormats
DataSet
DatasetKeys
Mappings
Mode
Options
Statistic
TitleStatus

Methods

 Key methods
Extension{linkDelphi=Extension_Method}
FillFileFilters{linkDelphi=FillFileFilters_Method}

LoadSpecification
Create{linkDelphi=Create_Method}
Destroy{linkDelphi=Destroy_Method}
AboutSMI
Execute
SaveSpecification

Events

OnAfterExecute
OnAfterRecordEvent
OnBeforeExecute
OnBeforeRecordEvent
OnErrorEvent
OnGetCellParams

SMI2HTML unit
See also

In this unit was declared a TSMImportFromHTML component for direct HTML loading.

Components
TSMImportFromHTML

See also

TSMImportBaseComponent
TSMIWizardDlg
TSMImportFromXLS
TSMImportFromWKS
TSMImportFromQuattro
TSMImportFromXML
TSMImportFromHTML
TSMImportFromBDE
TSMImportFromDataset

Properties

 Run-time only Key properties
FieldDelimiter{linkDelphi=FieldDelimiter_Property}
FieldDelimiterCustom{linkDelphi=FieldDelimiterCustom_Property}
Fixed{linkDelphi=Fixed_Property}
RecordSeparator{linkDelphi=RecordSeparator_Property}
RecordSeparatorCustom{linkDelphi=RecordSeparatorCustom_Property}
RowFirst{linkDelphi=RowFirst_Property}
RowLast{linkDelphi=RowLast_Property}
SourceFileName{linkDelphi=SourceFileName_Property}
TextQualifier{linkDelphi=TextQualifier_Property}
TextQualifierCustom{linkDelphi=TextQualifierCustom_Property}

About
AnimatedStatus
DataFormats
DataSet
DatasetKeys
Mappings
Mode
Options
Statistic
TitleStatus

Methods

 Key methods
Extension{linkDelphi=Extension_Method}
FillFileFilters{linkDelphi=FillFileFilters_Method}

LoadSpecification
Create{linkDelphi=Create_Method}
Destroy{linkDelphi=Destroy_Method}
AboutSMI
Execute
SaveSpecification

Events

OnAfterExecute
OnAfterRecordEvent
OnBeforeExecute
OnBeforeRecordEvent
OnErrorEvent
OnGetCellParams

SMI2TXT unit
See also

In this unit was declared a TSMImportFromText component which allow to load a data from
fixed text files or comma-delimited files.

Components
TSMImportFromText

See also

TSMImportBaseComponent
TSMIWizardDlg
TSMImportFromText
TSMImportFromXLS
TSMImportFromQuattro
TSMImportFromXML
TSMImportFromHTML
TSMImportFromBDE
TSMImportFromDataset

Methods

 Key methods
Extension{linkDelphi=Extension_Method}
FillFileFilters{linkDelphi=FillFileFilters_Method}

LoadSpecification
Create{linkDelphi=Create_Method}
Destroy{linkDelphi=Destroy_Method}
AboutSMI
Execute
SaveSpecification

Events

OnAfterExecute
OnAfterRecordEvent
OnBeforeExecute
OnBeforeRecordEvent
OnErrorEvent
OnGetCellParams

SMI2WKS unit
See also

In this unit was declared a TSMImportFromWKS component for direct importing from Lotus
1-2-3 spreadsheets.

Components
TSMImportFromWKS

See also

TSMImportBaseComponent
TSMIWizardDlg
TSMImportFromText
TSMImportFromXLS
TSMImportFromWKS
TSMImportFromXML
TSMImportFromHTML
TSMImportFromBDE
TSMImportFromDataset

Methods

 Key methods
Extension{linkDelphi=Extension_Method}
FillFileFilters{linkDelphi=FillFileFilters_Method}

LoadSpecification
Create{linkDelphi=Create_Method}
Destroy{linkDelphi=Destroy_Method}
AboutSMI
Execute
SaveSpecification

Events

OnAfterExecute
OnAfterRecordEvent
OnBeforeExecute
OnBeforeRecordEvent
OnErrorEvent
OnGetCellParams

SMI2WQ unit
See also

In this unit was declared a TSMImportFromQuattro component for direct importing from
QuattroPro spreadsheets.

Components
TSMImportFromQuattro

See also

TSMImportBaseComponent
TSMIWizardDlg
TSMImportFromText
TSMImportFromWKS
TSMImportFromQuattro
TSMImportFromXML
TSMImportFromHTML
TSMImportFromBDE
TSMImportFromDataset

Methods

 Key methods
Extension{linkDelphi=Extension_Method}
FillFileFilters{linkDelphi=FillFileFilters_Method}

LoadSpecification
Create{linkDelphi=Create_Method}
Destroy{linkDelphi=Destroy_Method}
AboutSMI
Execute
SaveSpecification

Events

OnAfterExecute
OnAfterRecordEvent
OnBeforeExecute
OnBeforeRecordEvent
OnErrorEvent
OnGetCellParams

SMI2XLS unit
See also

In this unit was declared a TSMImportFromXLS component for direct importing from MS
Excel spreadsheets.

Components
TSMImportFromXLS

See also

TSMImportBaseComponent
TSMIWizardDlg
TSMImportFromText
TSMImportFromXLS
TSMImportFromWKS
TSMImportFromQuattro
TSMImportFromHTML
TSMImportFromBDE
TSMImportFromDataset

Properties

 Run-time only Key properties
RowFirst{linkDelphi=RowFirst_Property}
RowLast{linkDelphi=RowLast_Property}
SourceFileName{linkDelphi=SourceFileName_Property}

About
AnimatedStatus
DataFormats
DataSet
DatasetKeys
Mappings
Mode
Options
Statistic
TitleStatus

Methods

 Key methods
Extension{linkDelphi=Extension_Method}
FillFileFilters{linkDelphi=FillFileFilters_Method}

LoadSpecification
Create{linkDelphi=Create_Method}
Destroy{linkDelphi=Destroy_Method}
AboutSMI
Execute
SaveSpecification

Events

OnAfterExecute
OnAfterRecordEvent
OnBeforeExecute
OnBeforeRecordEvent
OnErrorEvent
OnGetCellParams

SMI2XML unit
See also

In this unit was declared a TSMImportFromXML component for direct XML loading.

Components
TSMImportFromXML

See also

UserAccess
TSMIRestriction
TSMIRestrictions

Properties

 Run-time only Key properties
 FieldAdjustment
 FieldDelimiter
 FieldMapping
 FirstRow
 ImportMode
 LastRow
 PreviewData
 RecordSeparator
 SourceFileName
 Specification
 TableType
 TextQualifier
 TextType

Methods

 Key methods
 Create

SMIWiz unit
See also

In this unit was declared TSMIWizardDlg component which implement compound import
component with end-user wizard dialog for step-by-step import instructions.

Also in this unit was declared types for end-user restrictions.

Components
TSMIWizardDlg

Objects
TSMIUserAccess

Types
TSMIGetSpecificationsEvent
TSMIRestriction
TSMIRestrictions

See also

TSMIRestriction
UserAccess
TSMIuserAccess

See also

TSMIRestriction
UserAccess
TSMIuserAccess

See also

TSMIRestriction
UserAccess
TSMIuserAccess

See also

TSMIRestriction
UserAccess
TSMIuserAccess

See also

TSMIRestriction
UserAccess
TSMIuserAccess

See also

TSMIRestriction
UserAccess
TSMIuserAccess

See also

TSMIRestriction
UserAccess
TSMIuserAccess

See also

TSMIRestriction
UserAccess
TSMIuserAccess

See also

TSMIRestriction
UserAccess
TSMIuserAccess

See also

TSMIRestriction
UserAccess
TSMIuserAccess

See also

TSMIRestriction
UserAccess
TSMIuserAccess

Extension

See also

TSMIRestriction
UserAccess
TSMIuserAccess

See also

TSMIRestriction
UserAccess
TSMIuserAccess

See also

TSMImportBaseComponent
TSMImportFromText
TSMImportFromXLS
TSMImportFromWKS
TSMImportFromQuattro
TSMImportFromXML
TSMImportFromHTML
TSMImportFromBDE
TSMImportFromDataset

Properties

 Run-time only Key properties
FieldDelimiter{linkDelphi=FieldDelimiter_Property}
FieldDelimiterCustom{linkDelphi=FieldDelimiterCustom_Property}
Fixed{linkDelphi=Fixed_Property}

 Formats
 Picture

RecordSeparator{linkDelphi=RecordSeparator_Property}
RecordSeparatorCustom{linkDelphi=RecordSeparatorCustom_Property}
RowFirst{linkDelphi=RowFirst_Property}
RowLast{linkDelphi=RowLast_Property}
SourceFileName{linkDelphi=SourceFileName_Property}

 TableType
TextQualifier{linkDelphi=TextQualifier_Property}
TextQualifierCustom{linkDelphi=TextQualifierCustom_Property}

 Title
 UseDisplayNames
 UserAccess

About
AnimatedStatus
DataFormats
DataSet
DatasetKeys
Mappings
Mode
Options
Statistic
TitleStatus

Methods

 Key methods
Create{linkDelphi=Create_Method}
Destroy{linkDelphi=Destroy_Method}

 Execute
 ExecuteWithoutDialog

LoadSpecification
Extension
FillFileFilters
AboutSMI
SaveSpecification

Events

 Key events
 OnGetSpecifications

OnAfterExecute
OnAfterRecordEvent
OnBeforeExecute
OnBeforeRecordEvent
OnErrorEvent
OnGetCellParams

See also

TitleStatus
Title

Picture property example

{load a logo from external file}
Picture.LoadFromFile('c:\My Documents\company.bmp');

{load a logo from linked resource file}
Picture.Bitmap.Handle := LoadBitmap(hInstance, 'LOGO');

See also

TTableTypeImport

See also

Picture
TitleStatus

Title property example

smi.Title := 'Step-by-step data loading';

See also

TSMIUserAccess

TSMIRestriction
TSMIRestrictions

See also

ExecuteWithoutDialog

Execute method example

{1. load a specification with pre-defined settings}
smi.LoadSpecification('C:\ForLoad\remote_office.smi');

{2. show a wizard with step-by-step instructions}
smi.Execute;

See also

Execute

ExecuteWithoutDialog method example

{1. load a specification}
smi.LoadSpecification('C:\ForLoad\remote_office.smi');

{2. "silence" data loading by specification}
smi.ExecuteWithoutDialog;

See also

LoadSpecification
SaveSpecification
TSMIGetSpecificationsEvent

OnGetSpecifications event example

lstFiles.AddObject('Country specification (fixed list)',
TObject(LongInt(NewStr('d:\spec\country1.smi'))));

ThousandSeparator property
See also

Applies to
TSMIDataFormats object

Declaration
property ThousandSeparator: Char;

Description
Using this property you can customize the ThousandSeparator character for any numeric
and curremcy values.
By default is a current value from Regional settings of Windows.

TAfterRecordEvent type
See also

Unit
SMIBase

Declaration
type TAfterRecordEvent = procedure(Sender: TObject; var Abort:
Boolean); of object;

Description
This type is defined for OnAfterRecordEvent that allow to control an import process after
each loaded row.

TBeforeRecordEvent type
See also

Unit
SMIBase

Declaration
type TBeforeRecordEvent = procedure(Sender: TObject; const Fields:
string; Values: Variant; var Accept: Boolean); of object;

Description
This type is defined for OnBeforeRecordEvent that allow to control an import process before
loading of any row.

Also using this event you can skip some row from loading (just by your custom condition).

TErrorEvent type
See also

Unit
SMIBase

Declaration
type TErrorEvent = procedure(Sender: TObject; Error: Exception; var
Abort: Boolean); of object;

Description
This type declared for events which will be called after any error during importing.

The Sender is a current import component where was raised the exception.
The Error is standard exception type.

If you want to stop a process, you must return True in Abort parameter.
But if you want to ignore this error and continue the import, just return a False.

In this event you can handle the any errors and, for example, to save the "bad" values in
some buffer for next modification and re-loading.

TGetCellParamsEvent type
See also

Unit
SMIBase

Declaration
type TGetCellParamsEvent = procedure(Sender: TObject; Field:
TField; var Value: Variant); of object;

Description
This type declared for events where you can control import process in own hands. The
event will be called for each imported value (each field processing for any records).

If you want to change a result value which will be imported in destination dataset, you must
change a Value parameter.
The Field parameter will show a field of destination dataset where will be placed a value.
The Sender is an import component which was used for data loading and parsing.

TImportFormatTypes type
See also

Unit
SMIBase

Declaration
type TImportFormatTypes = set of TTableTypeImport;

Description
This type is a set of supported formats of external files.

TImportMode type
See also

Unit
SMIBase

Declaration
type TImportMode = (imAppend, imUpdate, imAppendUpdate, imDelete,
imCopy);

Description
This type is enumeration for available import modes:
1. imAppend - the each record from source file will be inserted in destination dataset
(appends all records). The destination must not have any records with the key of the any of
the records in the source.
2. imUpdate - the records in destination dataset will be updated with "similar" (by key fields)
records in source file. Each record in the source must have a record in the destination with
the same key the source.
3. imAppendUpdate - the records in destination dataset will be updated with "similar"
records in source file and rest records will be inserted there (appends any records which do
not already exist and replaces those which do)
4. imDelete - in destination dataset will be deleted the records which have "similar" (by key
fields) records in source file. Each source record must have a key which is also found in the
destination.
5. imCopy - makes an exact duplicate of the source table. Before importing the all records in
destination will be deleted and after that inserted the records from source file.

The imAppend is the default mode.

TSMIAbout type
See also

Unit
SMIBase

Declaration
type TSMIAbout = string;

Description
This type is design-time only and is declared for About property that allow to receive a short
information about SMImport suite in Delphi/C++Builder IDE from Object Inspector window.

TSMIDateOrder type
See also

Unit
SMIBase

Declaration
type TSMIDateOrder = (doMDY, doDMY, doYMD, doYDM, doDYM, doMYD);

Description
This type provides a possibility to customize the date order for any date/time values.

doMDY is a 'm/d/yy' format of date
doDMY is a 'd/m/yy' format of date
doYMD is a 'yy/m/d' format of date
doYDM is a 'yy/d/m' format of date
doDYM is a 'd/yy/m' format of date
doMYD is a 'm/yy/d' format of date

TSMIFieldDelimiter type
See also

Unit
SMIBase

Declaration
type TSMIFieldDelimiter = (fdNone, fdCustom, fdTab, fdSemicolon,
fdComma, fdSpace);

Description
This type declared for easy delimiter setting using list of pre-defined field delimiters:
1. fdNone - your external text file haven't any delimiter between fields
2. fdCustom - you have a custom delimiter which defined in FieldDelimiterCustom
3. fdTab - the delimiter is tabular character
4. fdSemicolon - the delimiter is semicolon (;) character
5. fdComma - the delimiter is comma (,) character
6. fdSpace - the delimiter is space (#32) character

TSMIOption type
See also

Unit
SMIBase

Declaration
type TSMIOption = (soShowMessage, soExtendedStatistic,
soSkipEmptyRow, soUseAnimatedControl, soWaitCursor);

Description
This type enumerates the supported options during importing:

soShowMessage: if you'll exclude this flag from Options property, then import will be
"silence" - your user will not receive any interactive dialogs. Else user can receive a dialog
with warning, error etc
This option is very useful for web-applications, server-application or other multi-tier
environments.

soExtendedStatistic: if you'll include this flag, during import process will be displayed an
extended information about data loading - total processed rows, number of errors, number
of added records, number of updated records and number of deleted records

soSkipEmptyRow: allow to skip all empty lines in text file.

soUseAnimatedControl: if flag is not included in options, then animated picture is not
created in status dialog. Enabled animated will increase a time and reduce a speed of
import process.

soWaitCursor: please exclude this option if you develop server-side tool. If flag is included,
when import process is started, default cursor willbe changed to crHourGlass and restored
to default when process is finsihed.

TSMIOptions type
See also

Unit
SMIBase

Declaration
type TSMIOptions = set of TSMIOption;

Description
This type is a list of supported options during import process.

TSMIRecordSeparator type
See also

Unit
SMIBase

Declaration
type TSMIRecordSeparator = (rsCustom, rsCRLF, rsCR, rsLF);

Description
This type enumerates a supported pre-defined separators between records (lines) in text file
which will be imported:
rsCustom: used a custom separator which was assigned to RecordSeparatorCustom
property
rsCRLF: used a "standard" Windows/DOS text separator (#13#10)
rsCR: used a character #13 as separator
rsLF: used a "standard" UNIX separator (#10 character)

TSMIStatistic type
See also

Unit
SMIBase

Declaration
type TSMIStatistic = class
TotalCount: LongInt; {count of records that must be loaded from
file}
TotalImported: LongInt; {number of processed/loaded records}
TotalAdded: LongInt; {number of new added records}
TotalDeleted: LongInt; {number of deleted records}
TotalUpdated: LongInt; {number of modified records}
TotalErrors: LongInt; {number of errors}

UpdateStep: LongInt; {step for visual progress bar updating}
end;

Description
This type provides a possibility to read an extended statistic about import process.

TSMITextQualifier type
See also

Unit
SMIBase

Declaration
type TSMITextQualifier = (tqNone, tqCustom, tqQuot, tqApos);

Description
This type is list of pre-defined text qualifier:

tqNone: the text qualifier is not used
tqQuot: the text is quoted and must be extracted between "
tqApos: the text is quoted and must be extracted between '
tqCustom: used a custom qualifier which was defined in TextQualifierCustom property

TTableTypeImport type
See also

Unit
SMIBase

Declaration
type TTableTypeImport = (teParadox, teDBase, teText, teHTML, teXLS,
teWKS, teQuattro, teXML, teAccess, teWord);

Description
This type is a list of supported file formats which you can use for importing.

AboutSMImport procedure
See also

Unit
SMIBase

Declaration
procedure AboutSMImport;

Description
This global procedure allow to activate a dialog with short information about SMImport suite
and author without import component creation.

Statistic property
See also

Applies to
TSMImportBaseComponent component

Declaration
property Statistic: TSMIStatistic;

Description
You can read an extended statistic information about import process.
This information is available during import process and after end of data loading.

After each starting of data loading the statistic information will be empty so if you need
some global information that combine a few import processes, you must summarize it after
import finishing.

TSMIColumn type
See also Example

Unit
SMIBase

Description
This type is an item in collection of parsed columns from external file that could be used for
creation of dataset before import will be started.

Next published attributes are available:
property Alignment: TAlignment
property FieldName: string
property Caption: string
property DataType: TSMIDataType
property Size: Integer
property Precision: Integer

TSMIColumns type
See also

Unit
SMIBase

Description
This type is a collection of parsed columns that could be used for dataset creation by data
from external file.

TSMIOnCreateStructure type

Unit
SMIBase

Declaration
type TSMIOnCreateStructure = procedure(Sender: TObject; Columns:
TSMIColumns); of object;

Description
This type is declared for OnCreateStructure event that allow to create a dataset with parsed
structure from external file.

PSpreadSheetRow type
See also

Unit
SMCells

Declaration
type PSpreadSheetRow = ^TSpreadSheetRow;

Description
This is an internal type for spreadsheet reading and interaction with virtual array.

TSpreadSheetCols type
See also

Unit
SMCells

Declaration
type TSpreadSheetCols = array[0..MAXCol] of Variant;

Description
This type is declaration of column array in each row of virtual array.

See also

SMI2Cell unit

SMXLS unit
SMWQ unit
SMWKS unit

TOnCellValue type
See also

Unit
SMCells

Declaration
type TOnCellValue = procedure(Sender: TObject; Row, Column:
Integer; Value: Variant); of object;

Description
This type is used for OnCellValue event declaration that allow to load a value to any cell of
virtual array.

TOnColumnWidth type
See also

Unit
SMCells

Declaration
type TOnColumnWidth = procedure(Sender: TObject; ColumnNo: Integer;
Width: Integer); of object;

Description
This type is used for OnColumnWidth event declaration that allow to load a width of any
column in virtual array.

TOnDimensions type
See also

Unit
SMCells

Declaration
type TOnDimensions = procedure(Sender: TObject; FirstRow, LastRow,
FirstColumn, LastColumn: Integer); of object;

Description
This type is used for OnDimensions event declaration that allow to define a number of total
rows and columns of virtual array.

TOnRowHeight type
See also

Unit
SMCells

Declaration
type TOnRowHeight = procedure(Sender: TObject; RowNo: Integer;
Height: Integer); of object;

Description
This type is used for OnRowHeight event declaration that allow to define a row height in the
virtual array.

TSpreadSheetRow type
See also

Unit
SMCells

Declaration
type TSpreadSheetRow = record
Index: Integer;
Cols: TSpreadSheetCols;
end;

Description
This is an internal type for spreadsheet reading and interaction with virtual array.

See also

SMIBase unit
SMI2DS unit
SMI2Cell unit
SMI2HTML unit
SMI2TXT unit
SMI2WKS unit
SMI2WQ unit
SMI2XLS unit
SMI2XML unit
SMIWiz unit

GetAvailableImportFormats function
See also

Unit
SMI2BDE

Declaration
function GetAvailableImportFormats: TImportFormatTypes;

Description
This function returns a list of available file formats. By default, if BDE is not installed on
computer, then BDE's file formats (Paradox+DBase) will be excluded from set of available
formats.

See also

SMIBase unit
SMI2BDE unit
SMI2Cell unit
SMI2HTML unit
SMI2TXT unit
SMI2WKS unit
SMI2WQ unit
SMI2XLS unit
SMI2XML unit
SMIWiz unit

See also

SMCells unit
SMWQ unit
SMWKS unit

TExcelVersion type
See also

Unit
SMXLS

Declaration
type TExcelVersion = (evUnknown, evExcel2, evExcel3, evExcel4,
evExcel5, evExcel7, evExcel8);

Description
This type is enumerates the available spreadsheet versions which are supported by
SMImport suite for direct reading without any external libraries.

See also

SMCells unit
SMXLS unit
SMWKS unit

TWQVersion type
See also

Unit
SMWQ

Declaration
type TWQVersion = (qvUnknown, qvWQ1, qvWQ2);

Description
This type is enumerates the available spreadsheet versions which are supported by
SMImport suite for direct reading without any external libraries.

See also

SMCells unit
SMXLS unit
SMWQ unit

TWKSVersion type
See also

Unit
SMWKS

Declaration
type TWKSVersion = (wvUnknown, wvWKS1, wvWKS2, wvWR1);

Description
This type is enumerates the available spreadsheet versions which are supported by
SMImport suite for direct reading without any external libraries.

See also

Version

See also

SMICells unit

SMIBase unit
SMI2BDE unit
SMI2DS unit
SMI2HTML unit
SMI2TXT unit
SMI2WKS unit
SMI2WQ unit
SMI2XLS unit
SMI2XML unit
SMIWiz unit

See also

SMIBase unit
SMI2BDE unit
SMI2DS unit
SMI2Cell unit
SMI2TXT unit
SMI2WKS unit
SMI2WQ unit
SMI2XLS unit
SMI2XML unit
SMIWiz unit

See also

SMIBase unit
SMI2BDE unit
SMI2DS unit
SMI2Cell unit
SMI2HTML unit
SMI2WKS unit
SMI2WQ unit
SMI2XLS unit
SMI2XML unit
SMIWiz unit

See also

SMIBase unit
SMI2BDE unit
SMI2DS unit
SMI2Cell unit
SMI2HTML unit
SMI2TXT unit
SMI2WQ unit
SMI2XLS unit
SMI2XML unit
SMIWiz unit

See also

SMIBase unit
SMI2BDE unit
SMI2DS unit
SMI2Cell unit
SMI2HTML unit
SMI2TXT unit
SMI2WKS unit
SMI2XLS unit
SMI2XML unit
SMIWiz unit

See also

SMIBase unit
SMI2BDE unit
SMI2DS unit
SMI2Cell unit
SMI2HTML unit
SMI2TXT unit
SMI2WKS unit
SMI2WQ unit
SMI2XML unit
SMIWiz unit

See also

SMIBase unit
SMI2BDE unit
SMI2DS unit
SMI2Cell unit
SMI2HTML unit
SMI2TXT unit
SMI2WKS unit
SMI2WQ unit
SMI2XLS unit
SMIWiz unit

TSMIRestriction type
See also

Unit
SMIWiz

Declaration
type TSMIRestriction = (irDisabled, irReadOnly, irReadWrite);

Description
This type is declared for support of restrictions in wizard component:
irDisabled: the access is disabled
irReadOnly: user can view a current setting but can't change it
irReadWrite: user have a full access to setting - he/she can view and change a current
setting

TSMIRestrictions type
See also

Unit
SMIWiz

Declaration
type TSMIRestrictions = set of TSMIRestriction;

Description
This type is declared for support of restrictions in wizard component.

See also

SMIBase unit
SMI2BDE unit
SMI2DS unit
SMI2Cell unit
SMI2HTML unit
SMI2TXT unit
SMI2WKS unit
SMI2WQ unit
SMI2XLS unit
SMI2XML unit

TSMIGetSpecificationsEvent type
See also

Unit
SMIWiz

Declaration
type TSMIGetSpecificationsEvent = procedure(Sender: TObject;
lstFiles: TStrings); of object;

Description
This type is declared for OnGetSpecifications event that allow to customize a list of
available specification for wizard dialog.

Formats property
See also Example

Applies to
TSMIWizardDlg component

Declaration
property Formats: TImportFormatTypes;

Description
This property allow to restrict an end-user access to some file formats.

Especially this is very useful when you want to deploy an application without BDE - in this
case just exclude the teParadox and teDBase file formats.

See also

TSMIDataFormats

BooleanFalse
BooleanTrue
DateOrder
DecimalSeparator
ThousandSeparator
FourDigitYear
LeadingZeroInDate
TimeSeparator

See also

TBeforeRecordEvent
OnAfterRecordEvent

See also

OnBeforeRecordEvent
TOnAfterRecordEvent

See also

OnErrorEvent

See also

OnGetCellParams

See also

TTableTypeImport
Formats

See also

Mode

See also

About
AboutSMI
AboutSMImport

See also

DateOrder
TSMIDataFormats

See also

FieldDelimiter

See also

Options
TSMIOptions

See also

Options
TSMIOption

See also

RecordSeparator

See also

Statistic

See also

TextQualifier

See also

TableType

See also

About
AboutSMI

Statistic property - See also

TSMIStatistic

TSMIColumn type

TSMIDataType
TSMIColumns
OnCreateStructure

TSMIColumns type - See also

TSMIColumn
OnCreateStructure

See also

TSpreadSheetRow

See also

TSpreadSheetRow

See also

OnCellValue

See also

OnColumnWidth

See also

OnDimensions

See also

OnRowHeight

See also

PSpreadSheetRow
TSpreadSheetCols

See also

TableType

See also

Version

See also

Version

See also

TSMIRestrictions
UserAccess

See also

TSMIRestriction
UserAccess

See also

OnGetSpecifications

Formats property - See also

TImportFormatTypes

Formats property - Example

To exclude BDE's desktop files:
Formats := Formats - [teParadox, teDBase];

To Include WEB's files:
Formats := Formats + [teHTML, teXML];

TSMIDataType type
See also

Unit
SMIBase

Declaration
type TSMIDataType = (itString, itInteger, itFloat, itDateTime,
itDate, itTime, itBoolean);

Description
This type enumerate supported types for parsed columns in external files.

	Introduction to SMImport suite
	How to register own copy
	How to use expressions in Mappings
	TSMIDataFormats object
	TSMIDataFormats object Reference
	Properties
	BooleanFalse
	BooleanTrue
	DateOrder
	DateSeparator
	DecimalSeparator
	FourDigitYear
	LeadingZerosInDate
	TimeSeparator

	TSMImportBaseComponent component
	TSMImportBaseComponent component Reference
	Properties
	About
	AnimatedStatus
	DataFormats
	DataSet
	DatasetKeys
	FieldDelimiter
	FieldDelimiterCustom
	Fixed
	Mappings
	Mode
	Options
	RecordSeparator
	RecordSeparatorCustom
	RowFirst
	RowLast
	SourceFileName
	TextQualifier
	TextQualifierCustom
	TitleStatus

	Methods
	LoadSpecification
	Extension
	FillFileFilters
	AboutSMI
	Execute
	SaveSpecification

	Events
	OnAfterExecute
	OnAfterRecordEvent
	OnBeforeExecute
	OnBeforeRecordEvent
	OnErrorEvent
	OnGetCellParams
	OnCreateStructure

	TSpreadSheetCells component
	TSpreadSheetCells component Reference
	Properties
	ColCount
	RowCount

	Methods
	AddRow
	GetRow
	GetValue
	RemoveRow
	SetValue

	TCustomSpreadSheet component
	TCustomSpreadSheet component Reference
	Properties
	FileName
	OnCellValue
	OnColumnWidth
	OnDimensions
	OnRowHeight

	TSpreadSheet component
	TSpreadSheet component Reference
	Methods
	LoadFromFile

	TSMImportFromBDE component
	TSMImportFromBDE component Reference
	Properties
	TableType

	Methods

	TSMImportFromDataSet component
	TSMImportFromDataSet component Reference
	Properties
	SourceDataset

	TMSExcel component
	TMSExcel component Reference
	Properties
	SheetIndex
	Version

	Methods

	TQuattroPro component
	TQuattroPro component Reference
	Properties
	Version

	Methods

	TLotus123 component
	TLotus123 component Reference
	Properties
	Version

	Methods

	TSMImportFromCell component
	TSMImportFromCell component Reference
	Properties
	Methods

	TSMImportFromBDE component
	TSMImportFromBDE component Reference
	Properties
	TableType

	Methods

	TSMImportFromHTML component
	TSMImportFromHTML component Reference
	Properties
	Methods

	TSMImportFromText component
	TSMImportFromText component Reference
	Properties
	Methods

	TSMImportFromWKS component
	TSMImportFromWKS component Reference
	Methods

	TSMImportFromQuattro component
	TSMImportFromQuattro component Reference
	Methods

	TSMImportFromXLS component
	TSMImportFromXLS component Reference
	Methods

	TSMImportFromXML component
	TSMImportFromXML component Reference
	Properties
	Methods

	TSMIUserAccess object
	TSMIUserAccess object Reference
	Properties
	FieldAdjustment
	FieldDelimiter
	FieldMapping
	FirstRow
	ImportMode
	LastRow
	PreviewData
	RecordSeparator
	SourceFileName
	Specification
	TableType
	TextQualifier
	TextType

	Methods
	Create

	TSMIWizardDlg component
	TSMIWizardDlg component Reference
	Properties
	Picture
	TableType
	Title
	UseDisplayNames
	UserAccess

	Methods
	Execute
	ExecuteWithoutDialog

	Events
	OnGetSpecifications

